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We propose a method for determining the ground states of lattice-gas �or Ising� models. The method makes
possible to find all types of ground states, including chaotic and ordered-but-aperiodic ones, and to identify the
first-order phase transitions between them. Using this method, we prove the existence of an infinite series of
ground states �the so-called “devil’s step”� in the lattice-gas model on the triangular lattice with up to third
nearest-neighbor interactions and we study the effect of the interactions up to 19th neighbors on this series. To
our best knowledge, this is only the second example of the devil’s step at zero temperature in the lattice-gas
models with one kind of particles.
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I. INTRODUCTION

Recently, in “Nature,” a paper was published where a new
kind of system was considered experimentally and theoreti-
cally �1�. The paper deals with buckled colloidal monolayers.
The authors claimed that such a system is analogous to Wan-
nier’s antiferromagnetic Ising model on the triangular lattice.
Among other things, they study the ground states of the sys-
tem and observe the formation of zigzagging stripes.

Starting from the paper by Wannier �2�, Ising models on
the triangular lattice �or equivalent lattice-gas models� were
studied very intensively and by various methods. Great in-
terest in these models was awaken by their multiple applica-
tions: from magnetic phenomena �3� to the adsorption of
particles on crystal surfaces �4� or on carbon nanotubes �5�
and the intercalation of particles between atomic layers of
some compounds �6�. Much research was devoted to the
ground states, since the latter often can be determined ex-
actly and they provide an idea of the low-temperature behav-
ior of the models.

Ground states of the simplest Ising model on the tria-
ngular lattice �with only nearest-neighbor interaction and
with no field� were studied by Wannier. However, the in-
tensive study of the ground states of complex lattice-
gas models started only after the publication of a paper by
Kanamori, where the method of geometrical inequalities
was proposed �7�. Thereafter, many other methods have
been developed; some of them were elaborated in connec-
tion with the problem of the ground states of quantum
Falicov-Kimball model. Although the pioneer work by Kan-
amori appeared 40 years ago, until now there is no easy
general algorithm for determining ground states of lattice-gas
models.

Here we revisit the ground-state problem of the lattice-gas
model on the triangular lattice with nearest- and next-
nearest-neighbor interactions. A number of authors have al-
ready addressed this issue. These states were calculated by
Metcalf in 1974 �8�. Using the Monte Carlo method, he
found six ordered structures. In the same year, these struc-
tures were rigorously determined by Kaburagi and Kanamori

with the help of their method of geometrical inequalities �9�.
They also found an additional structure which was over-
looked by Metcalf. In 1986, using the method closely related
to the one of Kanamori, Brandt and Stolze confirmed the
results of earlier studies �10�. Hence, one would think that
the problem of the ground states of this model is completely
solved long ago. This is not the case, however. Here, we
develop an alternative approach, initiated in our previous
work �11�, and apply it to this old problem. This provides a
comprehensive idea of the ground states of this model and
allows one to identify easily the first-order phase transitions.

With the help of our approach, we show that the addition
of sufficiently small third nearest-neighbor repulsive interac-
tion generates an infinite series of periodic structures with
unit cells as large as we want. It is an example of the so-
called zero-temperature “devil’s step.” The existence of dev-
il’s step at zero temperature was proven by Kanamori for the
lattice-gas model on the honeycomb lattice with up to third
nearest-neighbor interaction.

The zero-temperature devil’s step is related to the infinite
adaptivity that was discovered by Anderson in a group of
crystalline materials �see Ref. �12� and references therein�. In
1978, Kittel suggested that long-range repulsive interactions
can account for such an infinite adaptivity. The example by
Kanamori proves that the range of these interactions does not
need to be very long. But it seems that Kanamori’s example
is the only known example of zero-temperature devil’s step
in lattice-gas models with one kind of particles.

We investigate how the pairwise interactions up to 19th
neighbors affect the devil’s step and show that some interac-
tions favor its formation only in the case of repulsion, the
others, in the case of attraction, and still others, in none of
the cases. Our method provides a possibility to demonstrate
clearly the role of topology of the lattice in the formation of
ground-state structures. To do so, we consider also the
ground state of the lattice-gas model on the honeycomb lat-
tice with nearest- and next-nearest-neighbor interactions in
the case of attractive nearest-neighbor interaction and dem-
onstrate that ordered structures without translational symme-
try, as well as partially disordered ones, can have minimal
energy.
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The paper is organized as follows. In Sec. II, the method
for determining the ground states is illustrated by the ex-
ample of the lattice-gas model on the triangular lattice with
nearest- and next-nearest-neighbor interactions. In Sec. III,
the analogous model on the honeycomb lattice is considered
�in the case of attractive nearest-neighbor interaction� and
quasicrystal-like ground states are found. In Sec. IV, it is
shown how to identify first-order phase transitions between
ground states and it is proven the existence of zero-
temperature devil’s step in the lattice-gas model on the trian-
gular lattice with up to third nearest-neighbor interaction. In
Sec. V, the effect of pairwise interactions up to 19th neigh-
bors on the devil’s step is investigated and some necessary
conditions for the existence of the devil’s step are found. The
final Sec. VI is devoted to the most important concluding
remarks.

II. METHOD FOR DETERMINING THE GROUND STATES

We will explain our method for determining the ground
states by the example of the lattice-gas model on the trian-
gular lattice with nearest- and next-nearest-neighbor interac-
tions. Here is the Hamiltonian of this model:

Hlg = I1�
NN

cicj + I2 �
NNN

cicj − �lg�
i

ci, �1�

where ci are the lattice-gas occupation variables �ci=1 if the
ith site is occupied and ci=0 if it is empty�, I1 and I2 are the
nearest- and next-nearest-neighbor couplings, respectively,
and �lg denotes the chemical potential of particles.

It is well known that this model is mathematically equiva-
lent to the following spin model:

HI = J1�
NN

�i� j + J2 �
NNN

�i� j − h�
i

�i, �2�

with the couplings J1=
I1

4 , J2=
I2

4 , and the external field h

=
�lg

2 −6�J1+J2�, where �i=2ci−1= �1 are the spin vari-
ables. Since the phase diagram of the latter is symmetric with
respect to the field inversion h↔−h, we will construct the
ground-state phase diagram for the spin model, although for
the sake of clarity we will use “the language of particles” and
not spins.

Our method of building the ground-state phase diagram is
based on the obvious fact that the ground states are the same
not only for the two Hamiltonians �1� and �2� but for the
entire family of Hamiltonians

H = V1�
NN

�a1�i + b1��a1� j + b1�

+ V2 �
NNN

�a2�i + b2��a2� j + b2� − ��
i

�a0�i + b0� ,

�3�

given that the couplings and “chemical potential” are related
to the parameters of model �2� in the following way:

V1 =
J1

a1
2 , V2 =

J2

a2
2 , � =

1

a0
�h + 6�a1b1V1 + a2b2V2�� ,

�4�

where ai�0 and bi are arbitrary quantities independent of
spin variables.

Now, we will consider the four-site clusters in the form of
trefoil. Then Hamiltonian �3� can be rewritten in the form
that contains the single sum over all possible trefoils

H =
�

i

Hi =
�

i

�
V1

2
σ1

i0

�
σ1

i1 + σ1
i2 + σ1

i3

�

+
V2

2

�
σ2

i1σ
2
i2 + σ2

i2σ
2
i3 + σ2

i3σ
2
i1

�

−
µ

2(α1 + 3α2)

�
α1σ

0
i0 + α2

�
σ0

i1 + σ0
i2 + σ0

i3

���
,

�5�

where the following notation is introduced:

�ij
k = ak�ij + bk, k = 0,1,2. �6�

Here, the first index at spin variables �ij denotes host trefoil
and the second one counts the sites within the trefoil �the
central site is marked as zero�. Every bond between a pair of
nearest or next-nearest neighbors belongs to two different
trefoils and is counted twice therefore the factors 1

2 are intro-
duced in the first and the second terms. Arbitrary factors �1
and �2 ��1�−3�2 and at least one of them is nonzero� take
account of the fact that every site belongs to two different
trefoils as the central site and to six other trefoils as the
lateral one. Let us note that the Hamiltonian H does not
depend on �1 and �2, although the local Hamiltonian Hi
depends on them. It will be shown below that such represen-
tation of the Hamiltonian enables one to build complete
ground-state phase diagram for the J1�0 case.

The following obvious statement holds true: if in a point
of the space �V1 ,V2 ,�� one can choose such a set of param-
eters ak, bk, and �k that some trefoil configurations �one or
more� have equal energy Hi and this energy is less than the
energy of other configurations and if, in addition, they can fill
the lattice, then these configurations generate all ground
states in this point. �More exactly, all ground states without
defects, that is such ground states where there are no con-
figurations with greater energy�. Without loss of generality,
the coefficients ak may be chosen equal, for instance, to 1/2.

The methods for determining the ground states of lattice-
gas models based on the representation of the Hamiltonian in
the form of a single sum over some clusters are known as
“m-potential methods” �13�. These methods were used to de-
termine the ground states of the Falicov-Kimball model
�14,15�. Our method differs from the known ones by the way
of constructing such m-potentials. In addition, we construct
m-potentials not for entire regions but only for so-called
“special points” including “infinite” ones �i.e., infinitely dis-
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tant from the origin of the coordinates� and we consider not
only periodic structures but all possible structures including
disordered and ordered-but-aperiodic ones.

We will present the ground-state phase diagram in the
� h

�J1� ,
J2

�J1� � plane. Since every region of the diagram which cor-
responds to certain structure should be convex, it will be
sufficient to find the points where the boundaries of these
regions meet each other and to determine the ground states at
these points. However, some regions meet at infinity, hence,
we also have to consider the points infinitely distant from the
origin of the coordinates. We will refer to the points of two-
dimensional ground-state phase diagram where the regions
meet as “special points.”

There are four infinite special points. If J2→+�, �1=0,
and the remaining parameters are fixed and arbitrary, then the
following configurations of the trefoil have the minimal and
equal energy:

�

�
��, �

�
��,

�

�
��, and �

�
�� �here, open circles

represent empty sites and filled circles represent particles�.
These are just the configurations that determine the ground
state at the point infinitely distant in the positive direction of
the ordinate axis. Any configuration of the entire triangular
lattice where there is no trefoil configurations, except these
four, will be a ground state in this point. If J2→−�, �1=0,
then the following configurations have the minimal energy:

�

�
��,

�

�
��, �

�
��, and �

�
��. They determine the ground state at

the point infinitely distant in the negative direction of the
ordinate axis.

Another two infinite special points which are symmetric
with respect to the field inversion are obtained if both h and
J2 tend to infinity. If J2= h

6 →−�, �1=0, then configurations

�

�
��,

�

�
��,

�

�
��, and

�

�
�� have the minimal energy. In the

symmetric point, the ground state is constructed with the
trefoil configurations where open circles are substituted by
filled ones and vice versa.

In the J1�0 case, there are only three finite special
points. If h=0, J2=−

J1

2 , b1=0, and �1=0, then at J1�0, the
following configurations of the trefoil have the minimal en-
ergy:

�

�
��,

�

�
��, �

�
��, and �

�
��. They determine the ground

states in the point h
�J1� =0,

J2

�J1� =
1
2 for J1�0. In the point h

�J1�

=−2,
J2

�J1� =1, the ground states at J1�0 are constructed with
configurations

�

�
��,

�

�
��,

�

�
��, and �

�
��. They have the mini-

mal energy at �1=0, b1=
a1

3 . The ground states in the sym-
metric point h

�J1� =2,
J2

�J1� =1 are constructed with the configu-
rations where open circles are substituted by filled ones and
vice versa.

The ground-state phase diagram for J1�0 is shown in
Fig. 1. To build it, only the ground states at three finite and
four infinite points were needed. All the ground states in the
line which connects two special points are generated by
those configurations of the trefoil which are common for
both points due to convexity of the regions. In the triangle
between three points, the ground states are constructed with
the configurations of the trefoil which are common for all
three points. For instance, configurations

�

�
�� and �

�
�� gen-

erate the stripe structure �a� depicted in Fig. 1. Using con-
figurations

�

�
�� and

�

�
�� which are common for point A and

two infinite points, one can construct not only one but two
�and only two� structures �b� and �c� �Fig. 1�. There is a
twofold degeneracy that cannot be removed by any isotropic
two-particle interaction �10�. Hence, in the J1�0, h�0 case,
we have three structures in addition to the “empty” one.

Now, let us consider the J1	0 case. As it will be clear
later, in this case, there are four finite special points at h

0, but only in two of them the ground states can be con-
structed of trefoils. In the point h

J1
=−4,

J2

J1
=1, at J1	0, the

following configurations have the minimal energy:
�

�
��,

�
�
��,

�

�
��, and

�

�
�� ��1=0, b1=

a1

3 �, and in the point h
J1

=−6,
J2

J1
=0:

�

�
��,

�

�
��, �

�
��, �

�
��, and

�

�
�� �b1=a1�. To construct

ground states in two other special points, one needs to con-
sider a bigger cluster, for instance, a cluster in the form of a
“flower” �hexagon with the central site�. Such a cluster gives
the possibility to find all special points and to construct the
ground states in both J1	0 and J1�0 cases. Let us rewrite
Hamiltonian �3� as a single sum over all possible flowers

H =
�

i

Hi

=
�

i

�
V1

2(β1 + β2)

�
β1σ

1
i0

�
σ1

i1 + σ1
i2 + σ1

i3 + σ1
i4 + σ1

i5 + σ1
i6

�

+β2

�
σ1

i1σ
1
i2 + σ1

i2σ
1
i3 + σ1

i3σ
1
i4 + σ1

i4σ
1
i5 + σ1

i5σ
1
i6 + σ1

i6σ
1
i1

��
+

V2

2

�
σ2

i1σ
2
i3 + σ2

i3σ
2
i5 + σ2

i5σ
2
i1 + σ2

i2σ
2
i4 + σ2

i4σ
2
i6 + σ2

i6σ
2
i2

�

−
µ

α1 + 6α2

�
α1σ

0
i0 + α2

�
σ0

i1 + σ0
i2 + σ0

i3 + σ0
i4 + σ0

i5 + σ0
i6

���
,

�7�
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where the following notations are introduced:

�ij
1 = a1�ij + b1, �ij

2 = a2�ij + b2, �ij
0 = a0�ij + b0. �8�

Here, as in the case of the trefoil, the first index at spin
variables �ij denotes host flower and the second one counts
the sites within the flower �the central site is marked as zero�.
Arbitrary factors �1 and �2 are introduced to take into ac-
count that every site belongs to one flower as the central one
and to six other flowers as the lateral one. In a similar man-

ner, arbitrary factors �1 and �2 reflect the fact that every
bond between nearest neighbors belongs to two flowers as
the radial one and to two other flowers as the lateral one.

If h=−
12J1

5 , J2=
J1

5 , b1=
a1

3 , �1=0, and �2=
2�1

3 , then at J1
	0, the following flower configurations have the minimal
energy:

��

��
���,

��

��
���,

��

��
���, ��

��
���, ��

��
���,

��

��
���, and ��

��
���. If h=0,

J2=0, b1=0, and �2=
�1

2 , then at J1	0, flower configurations

��

��
���,

��

��
���, ��

��
���,

��

��
���, ��

��
���,

��
��

���, ��

��
���,

��
��

���, ��
��

���, and ��
��

���

have the minimal energy.
Now we have the complete set of special points to con-

struct ground-state phase diagram in the J1	0 case. It is
depicted in Fig. 2, where three new ground-state structures
which appear in this case for h�0 are indicated.

For the sake of completeness, we will construct the
ground-state phase diagram for the J1=0 case. It is easy to do
since, in addition to the infinite points, being already found,
there exists only one finite point. It is the origin of the coor-
dinates. In this point, all configurations of the trefoil or the
flower are the ground-state configurations. The ground-state
phase diagram for J1=0 is shown in Fig. 3.

III. ROLE OF TOPOLOGY OF THE LATTICE

As may be seen, the problem of determining the ground
states can be divided into two interrelated parts: algebraic
one �determining the configurations of a cluster which have
minimal energy� and topological one �filling the lattice with
these configurations�. To demonstrate the role of topology in
the formation of ground states, let us also find the ground
states of Hamiltonian �2� on the honeycomb lattice. Consider
only the J1�0 case.

In the same way as for the triangular lattice, let us con-
sider the family of Hamiltonians that have the same ground
states and let us write them in the form of a single sum over
trefoils

FIG. 1. �Color online� Ground-state phase diagram for Ising
model on the triangular lattice with nearest- and next-nearest-
neighbor interactions in the J1�0 case. The configurations of the
trefoil for three infinite and two finite points �A and B� as well as for
different regions are indicated. Dashed red line is the line of the
first-order phase transitions.

FIG. 2. �Color online� Ground-state phase diagram for Ising
model on the triangular lattice with nearest- and next-nearest-
neighbor interactions in the J1	0 case. The configurations of the
trefoil and/or of the flower are indicated for special points and dif-
ferent regions. Three new structures ��e�, �f�, and �g�� for this case
are depicted. Dashed red lines are the lines of first-order phase
transitions; dotted blue lines are the lines of multiphase points.

FIG. 3. �Color online� Ground-state phase diagram for Ising
model on the triangular lattice with nearest- and next-nearest-
neighbor interactions in the J1=0 case. The configurations of the
trefoil are indicated for infinite points and different regions. Dotted
blue line is the lines of multiphase points.
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H =
�

i

Hi

=
�

i

�
V1

2
σ1

i0

�
σ1

i1 + σ1
i2 + σ1

i3

�

+ V2

�
σ2

i1σ
2
i2 + σ2

i2σ
2
i3 + σ2

i3σ
2
i1

�

−
µ

α1 + 3α2

�
α1σ

0
i0 + α2

�
σ0

i1 + σ0
i2 + σ0

i3

���
,

�9�

where

�ij
k = ak�ij + bk, k = 0,1,2. �10�

These Hamiltonians are connected to the Ising Hamiltonian
�2� using the following relations:

V1 =
J1

a1
2 , V2 =

J2

a2
2 , � =

1

a0
�h + 3a1b1V1 + 6a2b2V2� .

�11�

The ground-state phase diagram for the Ising model on
the honeycomb lattice with nearest- and next-nearest-
neighbor interactions in the J1�0 case can be constructed in
the same way as for the triangular lattice. It is depicted in
Fig. 4. As one can see, it is almost the same as the corre-
sponding diagram for the triangular lattice. The only differ-
ence is that the coordinates of points A and B for the honey-
comb lattice are twice as large as for the triangular one.
However, constructing ground-state structures with the same
configurations for two lattices, one will reveal a striking dif-
ference. Thus, trefoil configurations

�

�
�� and

�

�
�� form no

longer two but only one structure on the honeycomb lattice
while configurations

�

�
�� and �

�
��, which form a unique

structure on the triangular lattice, generate infinite number of
structures on the honeycomb lattice. These are the structures
depicted in Figs. 5�b� and 5�c� and their mixture in arbitrary
ratio �Fig. 6�. Moreover, on the honeycomb lattice, these
trefoil configurations generate two six-domain structures

FIG. 4. �Color online� Ground-state phase diagram for Ising
model on the honeycomb lattice with nearest- and next-nearest-
neighbor interactions in the J1�0 case. The configurations of the
trefoil for special points as well as for different regions are indi-
cated. Dashed red line is the line of the first-order phase transitions.

(a)

(b)

(c)

FIG. 5. �Color online� Ground-state structures for Ising model
on the honeycomb lattice with nearest- and next-nearest-neighbor
interactions in the J1�0 case.
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whose domain boundaries have zero formation energy �Fig.
7�. They appear in the case where a closed loop of particles
is formed. These ordered structures are similar to quasicrys-
tals since they do not possess a global translational symme-

try. They are immiscible between themselves and with pre-
vious structures.

Although quasicrystals have been intensively studied
since 1984, there is no clear understanding how they formed
�see Ref. �16� and references therein and also Ref. �17��.
Despite the fact that the quasicrystal-like structures that we
have obtained are unstable �even infinitesimal third nearest-
neighbor interaction will destroy them�, our investigation can
contribute to understanding the mechanism of formation of
quasicrystalline and disordered structures, especially on two-
dimensional lattices �18,19�. Like the authors of Ref. �16� do,
we demonstrate that local interactions lead to the formation
of an ordered structure without global translation symmetry.

We consider lattice models but we can reject the con-
straints imposed by the lattice and ask the following ques-
tion: what structures can be formed, for instance, with blocks

�

�
�� and �

�
��? It is clear that the answer is the following:

“triangular” structure �a� and “honeycomb” structures, de-
picted in Figs. 6 and 7. Hybrid “triangular-honeycomb”
structures cannot be formed.

IV. FIRST-ORDER PHASE TRANSITIONS
AND DEVIL’S STEP

To answer the question what structures will have minimal
energy if not the chemical potential but concentration of par-
ticles is fixed, one has to consider the ground-state structures
also at the boundaries between regions. Moreover, it will
provide the possibility to identify first-order phase transitions
driven by the chemical potential in the lattice-gas model or
by the field in the corresponding Ising model.

At the boundary between the “empty” phase �d� and
phase �a�, there is a partially disordered phase formed of
configurations

�

�
��,

�

�
��, and �

�
��. It is the mixture of both

phases in arbitrary ratio �Fig. 8�a��. At the boundary between
the “empty” and “completely filled” phases, the ground
states are generated only by two configurations:

�

�
�� and

�
�
��. These configurations are incompatible �in other words,

immiscible� and are able to generate only two structures:
“empty” one and “completely filled” one. There are no inter-
mediate ground states without defects between these two and
there will be a chemical potential �or field in the Ising model�
driven first-order phase transition between these phases.

There is a twofold degeneracy at the boundary between
the “empty” phase and phase �f� because the configuration

��

��
��� and the set of configurations �

��

��
���, ��

��
���� which gener-

ates phase �f� are incompatible. The same occurs at the
boundary between phase �f� and the phase which is symmet-
ric to it �particle-hole symmetry� because the sets of configu-
rations �

��

��
���, ��

��
���� and � ��

��
���, ��

��
���� are also incompatible.

Hence, if the next-nearest-neighbor interaction is attractive
�J2�0�, then all phase transitions are of the first order. This
agrees with the results of Monte Carlo simulations at non-
zero temperature �20�. However, there is the first-order phase
transition between phases �e� and �f�, if both interactions are
repulsive �0�J2�

J1

5 �, as far as the sets of configurations

�
��

��
���, ��

��
���� and �

��

��
���,

��

��
���� are incompatible. Indeed, the

FIG. 6. A mixture of two last structures, depicted in the previous
figure.

(b)

(a)

FIG. 7. Six-domain ground-state structures for the lattice-gas
model on the honeycomb lattice with nearest- and next-nearest-
neighbor interactions.
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Monte Carlo simulations indicate a first-order phase transi-
tion in this region �21�.

Let us also consider the boundary between regions �a�
and �b� ��c��. The ground states at this boundary are gener-
ated by the set of trefoil configurations �

�

�
��,

�

�
��, �

�
��� or by

the equivalent set of flower configurations �
��

��
���, ��

��
���,

��

��
���,

��
��

���, ��
��

���,
��
��

���, ��
��

���, ��
��

����. The two last configurations

cannot be realized in such a set. Configuration
��
��

��� �with
other configurations� can only generate the two-domain
structure shown in Fig. 8�b�. This structure is ordered but it
does not possess complete translational symmetry. Hence, it
can be considered as a quasicrystal-like structure. Other con-
figurations, in addition to structures �a�, �b�, and �c�, gener-
ate infinite number of structures which represent a mixture of
phases �a� and �b� in arbitrary ratio �Fig. 8�c��. Thus, one of
degenerated and immiscible phases �b� and �c�, notably
phase �b�, is miscible with phase �a� and another is immis-
cible.

Finally, let us proceed to the ground states at the boundary
of phases �b� ��c�� and �e�. They are generated by the set of
trefoil configurations �

�

�
��,

�

�
��,

�

�
��� or by the equivalent set

of flower configurations �
��

��
���,

��

��
���, ��

��
���,

��

��
���, ��

��
���,

��

��
����.

If one starts with configuration
��

��
���, then only structure �b�

can be obtained. In contrast, other configurations of the set
generate an infinite series of structures Sm �m=0−��. Struc-
ture number zero in this series is structure �e�. The next three
structures of the series are shown in Fig. 9.

In notations of Kaburagi and Kanamori �see Ref. �22��,
every structure is characterized by a set of numbers

p0,p1,p2,p3, . . . , �12�

where p0 is the number of particles per site �which changes
from 1

4 �m=0� to 1
3 �m=��� and p1 , p2 , p3 , . . . provide the

numbers of pairs of particles �per particle� that are first, sec-
ond, third,… neighbors, respectively. We will denote all
structures with the same numbers pi �i=0,1 ,2 , . . .� by

S�p0;p1,p2,p3, . . .� . �13�

Numbers p0 , p1 , p2 , . . . allow one to calculate the energy den-
sity of corresponding structure. Energy per site reads

E = �
i

p0piIi − p0�lg, i = 1,2, . . . . �14�

Here, Ii and �lg are couplings and the chemical potential of
the lattice-gas Hamiltonian. One can switch to the Ising
Hamiltonian using the following relations:

(b)

(a)

(c)

FIG. 8. �a� Chaotic mixture of phases �a� and �d�, �b� two-
domain structure at the boundary of phases �a� and �b� ��c��, and �c�
chaotic mixture of phases �a� and �b�.

(b)

(a)

(c)

FIG. 9. �Color online� Structures S1 �a�, S2 �b�, and S3 �c� from
the infinite series Sm.
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Ii = 4Ji, �lg = 2h + 2�
k

ziJi, �15�

where zi is the coordination number of the ith neighbors �see
Fig. 10�

zi

=	6 for i = k2 + k − 1,i = k2 + k,i = k2 + 2k �k = 1,2,3, . . .�
12 for other values of i .



�16�

For structures Sm, we have calculated the numbers pi up to
i=19 �a method to calculate pi is described in Appendix A�

p0 =
3m2 + 3m + 1

�3m + 2�2 , p1 =
3m2

3m2 + 3m + 1
,

p2 = 0, p3 =
3�m + 1�2

3m2 + 3m + 1
,

p4 =
6m�m + 1�

3m2 + 3m + 1
, p5 =

3m�3m + 1�
3m2 + 3m + 1

,

p6 =
3�m + 1�

3m2 + 3m + 1
, p7 =

6m�m − 1�
3m2 + 3m + 1

,

p8 = �3 for m = 0

3�m2 − 2m + 2�
3m2 + 3m + 1

, � p9 =
6m�m + 3�

3m2 + 3m + 1
,

p10 =
6m

3m2 + 3m + 1
, p11 = �0 for m = 0

3�m2 + 4m + 2�
3m2 + 3m + 1

, �
p12 =

3m�3m − 1�
3m2 + 3m + 1

, p13 = � 6 for m = 0

6�m2 − 1�
3m2 + 3m + 1

, �
p14 = �0 for m = 0

6�m2 + 2m − 2�
3m2 + 3m + 1

, � p15 = �3 for m = 0

3�3m2 − m − 1�
3m2 + 3m + 1

, �
p16 = � 0 for m = 0

6�m2 − 3m + 4�
3m2 + 3m + 1

, � p17 = � 0 for m = 0

12�m + 1�
3m2 + 3m + 1

, �
p18 = �0 for m = 0,1

6m�m − 2�
3m2 + 3m + 1

, � p19 = � 0 for m = 0

3�m2 − 4m + 8�
3m2 + 3m + 1

. �
�17�

The structures depicted in Fig. 9 were found from com-
pletely different considerations by Nakanishi and Shiba and
were called “triangular domain structures” �23�. In the model
with only nearest- and next-nearest-neighbor interactions,
they occur at the boundary between the structure S0 �or �e��
and the structure �c� and there is no other pure ground-state
structures at this boundary. They are incompatible (immis-
cible). The nonzero temperature will remove the degeneracy
at the boundary where these structures occur and they will
form the �top� devil’s step �23,24�, i.e., an infinite series of
phases with the unite cell as large as we want. However, not
only the temperature but also the repulsive third neighbor
interaction removes the degeneracy and at J3	0, we have
the devil’s step even at zero temperature �see Fig. 11�.

To prove it, we shall explain how, on a two-dimensional
ground-state phase diagram, new regions �phases� appear
when a new term is introduced into the Hamiltonian. If a
new interaction is small enough, then new regions can grow
only from the boundaries between existing regions, where
corresponding structures are already present. Otherwise the
convexity principle �the region corresponding to a structure
should be convex� would be broken down. From this require-
ment follows the conclusion than only structures Sm can
grow from the boundary between phases �e� and �c� ��b��
when interaction J3 �or any other interaction� becomes non-
zero.

To answer the question what interaction strength J3
should be for the devil’s step to exist, let us add to Hamil-
tonian �7� the term that represents the third nearest-neighbor
interaction

V3��i1
3 �i4

3 + �i2
3 �i5

3 + �i3
3 �i6

3 � , �18�

where the following notations are introduced:

FIG. 10. �Color online� Neighbors on the triangular lattice.
Neighbors with coordination number 6 are marked in red �light
gray�.
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�ij
3 = a3�ij + b3. �19�

The expressions for switching to the simple spin model will
be as follows:

V1 =
J1

a1
2 , V2 =

J2

a2
2 , V3 =

J3

a3
2 ,

� =
1

a0
�h + 6�a1b1V1 + a2b2V2 + a3b3V3�� . �20�

Whatever additional interactions are introduced into the
Hamiltonian, infinite special points will remain the same in
the � h

�J1� ,
J2

�J1� � plane �it follows from their definition�; only
finite special points can change. Let us find some finite spe-
cial points to be able to study the conditions for the existence
of the devil’s step in the case of nonzero third neighbor in-
teraction. In the sets of flower configurations for finite points
listed below, the configurations which are placed before
semicolons are realized in the line connecting the corre-
sponding point and infinite point J2= h

6 →−�.
If J2=0, h=−6J1−6J3, then at J1	0, J3	0 ��1=0, �1

=0�, configurations
��

��
���,

��

��
���,

��

��
���; ��

��
���, ��

��
���,

��

��
���,

��
��

���,

and ��

��
��� have the minimal energy but the last three ones

cannot be realized in this set.
If J2=2J3, h=−6J1−4J3, then at 0�J3�

J1

4 ��1=0, �1

=
J1−2J3

2J3
�2, b1=

3J1−8J3

3�J1−2J3�a1�, configurations
��

��
���,

��

��
���,

��

��
���;

��

��
���, and ��

��
��� have the minimal energy �the last one cannot

be realized�.

If J2=J1−4J3, h=−4J1, then at 0�J3�
J1

6 ��1=0, �1

=
J1−2J3

2J3
�2, b1=

J1

3�J1−2J3�a1�, the following configurations have
the minimal energy:

��

��
���,

��

��
���, ��

��
���,

��

��
���; ��

��
���, and

��
��

���

�the last one cannot be realized in this set�. If, in addition,
J3=

J1

6 , then configurations ��

��
��� and ��

��
��� are added to the

previous ones.
If J2=2J3, h=2J1−36J3, then at

J1

6 �J3�
J1

4 ��1=0, �1

=
J1−2J3

2J3
�2, b1=

J1

3�J1−2J3�a1�, the following configurations have

the minimal energy:
��

��
���,

��

��
���, ��

��
���,

��

��
���; and ��

��
���. If, in

addition, J3=
J1

4 , then configuration
��

��
��� is added to the pre-

vious ones.
If J2=J1−2J3, h=−4J1+2J3, then at 0�J3�

J1

4 ��1=0,

�1=
J1−2J3

2J3
�2, b1=

a1

3 �, the following configurations have the

minimal energy:
��

��
���, ��

��
���,

��

��
���,

��

��
���, ��

��
���; ��

��
���, and

��
��

���,
but the last one cannot be realized in this set. If, in addition,
J3=

J1

4 , then configurations ��

��
���, ��

��
���, and

��
��

��� are added to
the previous ones �the last one cannot be realized�.

If J2=2J3, h=2J1−22J3, then at
J1

4 �J3�
J1

2 ��1=0, �1

=
J1−2J3

2J3
�2, b1=

a1

3 �, configurations
��

��
���, ��

��
���,

��

��
���,

��

��
���,

��
��

���; ��

��
���, and

��
��

��� have the minimal energy �the last one

cannot be realized�. If, in addition, J3=
J1

2 , then configuration

��

��
��� is added to the previous ones.

If J2= 1
2J1, h=− 11

2 J1−6J3, then at 0�
J1

4 �J3 ��1=0, �1

=�2, b1= 2
3a1�, the following configurations have the minimal

energy:
��

��
���,

��

��
���,

��

��
���, ��

��
���; and ��

��
���.

If J2=2J3, h=−5J1−8J3, then at
J1

4 �J3�
J1

2 ��1=0, �1

=
J1−2J3

2J3
�2, b1= 2

3a1�, the following configurations have the

minimal energy:
��

��
���,

��

��
���, ��

��
���,

��

��
���; ��

��
���.

If J2=J1, h=−6J1−6J3, then at 0�
J1

2 �J3 ��1=0, �1=0�,
the following configurations have the minimal energy:

��

��
���,

��

��
���, ��

��
���, ��

��
���; ��

��
���, and

��
��

��� �the last one cannot be real-
ized in this set�.

If J2=2J3, h=−4J1−10J3, then at 0�
J1

2 �J3 ��1=0, �1

=
J1−2J3

2J3
�2, b1=

a1

3 �, the following configurations have the

minimal energy:
��

��
���, ��

��
���,

��

��
���,

��

��
���, ��

��
���; ��

��
���, and

��
��

���

�the last one cannot be realized�.
These special points make it possible to find the sequence

of regions �phases� on the ground-state phase diagram in the

� h
�J1� ,

J2

�J1� � plane at 0�J3�
J1

4 which converge in the infinite
point J2= h

6 →−� and have the form of parallel stripes �ex-
cept the first one and the last one�. It is the following se-
quence of phases: “empty” phase, phase S � 1

7 ;0 ,0 ,0�, gener-
ated by configurations

��

��
��� and

��

��
��� �see Fig. 12�, the

infinite series of phases Sm�m=0−��, and degenerated
phases �b� and �c�.

In the case
J1

4 �J3�
J1

2 , phase S0 does not exist: after
phase S� 1

7 ;0 ,0 ,0� goes the phase S� 1
5 ; 1

2 ,0 ,0�, generated
by configurations

��

��
���,

��

��
���, and ��

��
��� �Fig. 12�. As can be

seen from Fig. 12, this phase is disordered. One should men-

FIG. 11. �Color online� Regions in the � h
J1

,
J2

J1
� plane, which cor-

respond to the infinite series of phases Sm at J3=0.1J1 and large

enough and negative
h0

J1
. The red line is the boundary of the series.

The figure was obtained through the comparison of the energies of
structures Sm. h0 is introduced because we are not able to find the
values of h where the boundaries between phases Sm end �except
the boundary between S0 and S1�.
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tion that in Ref. �22� �where ground states of lattice-gas
model on the triangular lattice with up to third nearest-
neighbor interaction were investigated�, nothing has been
said about chaotization of phases despite the fact that a con-
siderable part of phases found in this paper are disordered.

The phase that succeeds the phase S� 1
5 ; 1

2 ,0 ,0� is gener-
ated by configurations

��

��
���,

��

��
���, ��

��
���, and

��

��
��� �all or

some of them� which have the minimal energy at the bound-
ary of this phase. These configurations generate an infinite

number of structures which are realized at the boundary of
phase S� 1

5 ; 1
2 ,0 ,0�. This phase is not succeeded by the phase

S� 1
4 ; 1

2 ,0 ,1� as follows from Ref. �22� �it exists only at the
boundary� but by disordered phase S� 4

15 ; 1
2 ,0 , 5

4 � �Figs. 13
and 14�. At J3= 9

26J1, the latter completely supplants the
phase S1. Although we do not know the configurations of a
cluster which are realized at the boundary between these two
phases, we can prove that there is no first-order phase tran-
sition between them �see Appendix B�.

We do not know whether new phases appear when J3
continues to increase. To answer this question, one needs to
consider successively bigger clusters. Not counting the sym-
metry of a cluster, the number of its states is equal to 2n,
where n is the number of cluster’s sites. Hence, the amount
of calculations increases exponentially with n. However, one
can state that the devil’s step completely disappears only at
J3=

J1

2 because only then a new phase begins to grow from
the boundary line of the infinite series of phases. It is the line
J2=− 1

6h+ 1
3J1− 5

3J3 that goes from J2=max�2J3 ,J1−2J3� to
the infinity. If 0�J3�

J1

2 , then the ground states in this line
�structures �b� and �c�� are generated by configurations

��

��
���,

��
��

���,
��

��
���, ��

��
���, and

��

��
���. If J3=

J1

2 , then also configuration

��

��
��� has the same energy and further increasing of J3 leads

to the emergence of new phase S� 1
4 ;1 ,0 ,0� that grows from

the boundary line of the infinite series of phases. It is a
disordered phase generated by configurations

��

��
���, ��

��
���, and

��
��

��� �Fig. 15�. Hence, we have proven the existence of zero-
temperature devil’s step in the model of the lattice gas on the

(b)

(a)

FIG. 13. �Color online� �a� Structure S� 1
4 ; 1

2 ,0 ,1� �a unit cell is

indicated� and �b� disordered phase S� 4
15 ; 1

2 ,0 , 5
4 � �a motif is

indicated�.

FIG. 14. �Color online� Another way of chaotization of phase
S� 4

15 ; 1
2 ,0 , 5

4 � �a motif is indicated�.

(b)

(a)

FIG. 12. �Color online� �a� Phase S� 1
7 ;0 ,0 ,0� and �b� disordered

phase S� 1
5 ; 1

2 ,0 ,0�. A unit cell is indicated for the first one and a
motif for the second one.

FIG. 15. �Color online� Disordered phase S� 1
4 ;1 ,0 ,0� �a motif is

indicated�.
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triangular lattice with up to third nearest-neighbor interaction
or in the corresponding Ising model at the conditions J1	0,
0�J3�

J2

2 .
In 1983, zero-temperature devil’s steps were first discov-

ered by Kanamori in the lattice-gas model on the honeycomb
lattice with first, second, and third neighbor interactions �25�.
It seems that until now, it has remained a single example of
the zero-temperature devil’s step in the lattice-gas models
with one kind of particles. Kanamori and Kaburagi have not
found it on the triangular lattice �22�. Though, in 1990, to-
gether with Tonegawa, they found an infinite series of
ground states in a lattice-gas model with two kinds of par-
ticles on the triangular lattice with first and second-neighbor
interactions �26�. But the presence of just two kinds of par-
ticles is substantial there.

Complete devil’s staircase and devil’s step as its part are
not only among the most interesting objects in theoretical
physics; they exist in real physical systems �27�. For in-
stance, recently devil’s staircase was reveled in the system of
lead atoms adsorbed on the crystal silicon surface Pb/Si�111�
�28�. As the authors write, devil’s staircase “shows a high
degree of self-organization driven by a repulsive long-range
adatom interaction.”

The existence of devil’s step in the model that we con-
sider as well as in the model considered by Kanamori �25�
means that even the short-range interactions �in two- and
three-dimensional models� can generate an infinite number
of phases in the ground-state phase diagram. Devil’s step is
also related to the problem of infinite adaptivity discovered
experimentally by Anderson �see Ref. �12� and references
therein�. The infinite adaptivity implies that, within certain
composition limits, every possible composition can attain a
unique, fully ordered structure without defects. The zero-
temperature devil’s step is just an example of such an infinite
adaptivity. In 1978, Kittel suggested that long-range repul-
sive interactions can account for it. Our example, as well as
the example of Kanamori, shows that the range of interac-
tions need not be large, much less infinite. In the next sec-
tion, we will show that the interactions need even not be
purely repulsive.

V. EFFECT OF PAIRWISE INTERACTIONS
UP TO 19TH RANGE ON THE DEVIL’S STEP

The question arises of whether pairwise interactions of a
range greater than 3 remove the degeneracy on the boundary
between the phases �e� and �c� ��b��. The expressions �17�
allow us to answer this question easily. Let J1 be greater than
zero and let all the interactions of the range equal to or
greater than 3 be zero except the interaction of the range r.
Then one can prove that interactions of ranges r
=6,7 ,8 ,12,16,18,19 generate the devil’s step in the case of
repulsion, interactions of ranges r=4,5 ,9 ,10,14 generate it
in the case of attraction, and interactions of ranges r
=11,13,15,17 do not generate it in any case �they generate
only the phase S1�.

To explain why pairwise interactions of some ranges gen-
erate the devil’s step in the case of attraction, the others, in
the case of repulsion, and still others, in none of the cases, let

us considered the expression for the energy of the structure
Sm. It reads as follows:

Em = 2p0�m�	�
i

�2pi�m� − zi�Ji − h
 . �21�

Now let us write the equation of the boundary between
phases Sm and Sm+1,

Em+1 − Em = 2p0�m + 1�	�
i

�2pi�m + 1� − zi�Ji − h

− 2p0�m�	�

i

�2pi�m� − zi�Ji − h
 = 0 �22�

or

h =
2�i

�p0�m + 1�pi�m + 1� − p0�m�pi�m��Ji

p0�m + 1� − p0�m�
− �

i

ziJi.

�23�

The number of ith neighbors per one particle for the struc-
ture Sm is equal to

pi�m� =
ai�m�m2 + bi�m�m + ci�m�

3m2 + 3m + 1
. �24�

If the interaction range is finite, then there is such a number
m0 that for all m�m0, the coefficients in the numerator do
not depend on m,

ai�m� = ai�m0� = ai��� = ai,

bi�m� = bi�m0� = bi��� = bi,

ci�m� = ci�m0� = ci��� = ci. �25�

The limit of Eq. �23� at m→� gives the equation of the
boundary of infinite series Sm,

h = �
i

8ai − 6bi − 3zi

3
Ji. �26�

If maximal range of interaction is equal to 19, then this equa-
tion takes the following form:

h = 2J1 − 6J2 − 10J3 − 8J4 + 12J5 − 12J6 + 16J7 + 14J8 − 32J9

− 24J10 − 22J11 + 24J12 + 4J13 − 20J14 + 24J15 + 40J16

− 36J17 + 28J18 + 26J19. �27�

If the interaction range is large, we are not able to find the
conditions when the devil’s step exists in the � h

�J1� ,
J2

�J1� � plane,
but we can write “internal” �only in the frame of the infinite
series of phases Sm� conditions of its existence �from some m
to the infinity�. They have the following form:

E� � Em for h = h���, m = 0,1,2, . . . , �28�

where

h��� = lim
m→�

h�m� = �
i

8ai − 6bi − 3zi

3
Ji. �29�

These conditions are equivalent to the following ones:
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�
i

�3m2�ai��� − ai�m�� + 3m�bi��� − bi�m��

+ bi��� − 3ci�m��Ji � 0. �30�

They become identical starting from m=m0,

�
i

bi − 3ci

3
Ji � 0. �31�

If the maximal range of interactions is equal to 19, then we
have three “internal” conditions:

− J3 + 2J4 + J5 − 2J6 − 2J7 − 8J8 + 6J9 + 2J10 − 2J11 − J12

+ 6J13 + 16J14 + 2J15 − 30J16 − 8J17 − 4J18 − 28J19

� 0 �for m 	 1� , �32�

− J3 + 2J4 + J5 − 2J6 − 2J7 − 8J8 + 6J9 + 2J10 − 2J11 − J12

+ 6J13 + 16J14 + 2J15 − 30J16 − 8J17 − 10J18 − 28J19

� 0 �for m = 1� , �33�

− J3 + 2J4 + J5 − 2J6 − 2J7 − 5J8 + 6J9 + 2J10 + 4J11 − J12

− 6J13 + 4J14 − 4J15 − 6J16 + 4J17 − 4J18 − 4J19

� 0 �for m = 0� . �34�

We have found only necessary, internal, conditions for
devil’s step existence in the case of pairwise interactions up
to r=19. �As follows from the convexity principle, the inter-
nal conditions are not only necessary but also sufficient for
devil’s step existence if �Ji� �i=3,4 , . . .� are small enough in
comparison to J1	0.� If the coefficients at Ji are negative
�positive� in all three conditions, then the corresponding in-
teraction favors the formation of the devil’s step in the case
of repulsion �attraction�. If the coefficient at Ji is negative in
some conditions and positive in another, then the correspond-
ing interaction does not favor the formation of the devil’s
step in any case.

It is much more difficult to find the sufficient conditions
of devil’s step existence. Therefore, we will restrict our con-
sideration to the fourth nearest neighbors. Let us consider the
ten-site cluster depicted in Fig. 16 and let us write the Hamil-
tonian in the form of a single sum over such clusters

H =
�

i

Hi

=
�

i

�
V1

2(2β1 + β2 + β3 + 2β4)
�
β1σ

1
i0

�
σ1

i1 + σ1
i2 + σ1

i3 + σ1
i4 + σ1

i5 + σ1
i6

�

+ β2

�
σ1

i1σ
1
i2 + σ1

i3σ
1
i4 + σ1

i5σ
1
i6

�
+ β3

�
σ1

i2σ
1
i3 + σ1

i4σ
1
i5 + σ1

i6σ
1
i1

�
+ β4

�
σ1

i7(σ
1
i1 + σ1

i6) + σ1
i8(σ

1
i2 + σ1

i3) + σ1
i9(σ

1
i4 + σ1

i5)
��

+
V2

2(2γ1 + γ2)

�
γ1

�
σ2

i1σ
2
i3 + σ2

i3σ
2
i5 + σ2

i5σ
2
i1 + σ2

i2σ
2
i4 + σ2

i4σ
2
i6

+ σ2
i6σ

2
i2

�
+ γ2σ

2
i0

�
σ2

i7 + σ2
i8 + σ2

i9

��

+
V3

2(δ1 + 2δ2)

�
δ1

�
σ3

i1σ
3
i4 + σ3

i2σ
3
i5 + σ3

i3σ
3
i6

�
+ δ2

�
σ3

i7(σ
3
i2 + σ3

i5)

+ σ3
i8(σ

3
i1 + σ3

i4) + σ3
i9(σ

3
i3 + σ3

i6)
��

+
V4

2

�
σ4

i7(σ
4
i3 + σ4

i4) + σ4
i8(σ

4
i5 + σ4

i6) + σ4
i9(σ

4
i1 + σ4

i2)
�

+
V5

2

�
σ5

i7σ
5
i8 + σ5

i8σ
5
i9 + σ5

i9σ
5
i7

�
−

µ

2(α1 + 6α2 + 3α3)

�
α1σ

0
i0 + α2

�
σ0

i1 + σ0
i2 + σ0

i3 + σ0
i4 + σ0

i5 + σ0
i6

�

+ α3

�
σ0

i7 + σ0
i8 + σ0

i9

���
, �35�

where the following notations are introduced:
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�ij
4 = a4�ij + b4, �ij

5 = a5�ij + b5, �36�

where �k, �k, k, and �k are arbitrary. Since every site has 12
fourth neighbors and six fifth neighbors, the expressions con-
necting this model with the Ising model are as follows:

Vi =
Ji

ai
2 , i = 1 − 5,

� =
1

a0
�h + 6�a1b1V1 + a2b2V2

+ a3b3V3 + 2a4b4V4 + a5b5V5�� . �37�

As one can see from the above formulae, the cluster in the
form of a big triangle makes it possible to consider interac-
tions up to fifth nearest neighbors, but we will restrict our
consideration to the range r=4 �J5=0�. The number of con-
figurations of the cluster is equal to 208. Hence, in this case
�and even in the case of the “flower” for which the number of
configurations is equal to 26�, it is impossible to avoid the
use of computer programs for analytical calculations.

The conditions for existence of the infinite series Sm in the
� h

�J1� ,
J2

�J1� � plane are equivalent to the conditions for existence
of a two-domain structure at the boundary of this series. This
structure is depicted in Fig. 17. It is generated by configura-
tions

��

��
���, ��

��
���,

��

��
���, and ��

��
��� or by triangle configurations

depicted in Fig. 18�a�.
If −J3+2J4�0, −J1+2J3−2J4�0, −J1+2J3+4J4�0,

then one can choose such a set of “free coefficients” in
Eq. �35� then at the boundary h=2J1−6J2−10J3−8J4 of the
infinite series Sm, starting from certain value of J2, the tri-
angle configurations depicted in Fig. 18�a� will have the
minimal energy. These “free coefficients” can be for instance

as follows: �1=0, �2=�3, �1=
J1−2J3+2J4

2J4
�4, �2=�3=

J3−2J4

J4
�4,

1=2, �1=
J3−2J4

J4
�2, ai=

1
2 , b2=

−2J1+J2+4J3−4J4

2J2
, b1=b4= 1

2 ,

b3=
−J1−J3+13J4

6�J3−3J4� . Although another ten configurations have the
same energy �Fig. 18�b��, they cannot be realized in this set.
It is easy to verify it directly, but we can avoid this as far as
these configurations contain no other flower configurations
than those which generate the two-domain structure and
structure �b�.

Then, we have sufficient conditions for existence of the
infinite series of phases Sm in the model with up to fourth
nearest-neighbor interaction. Here they are:

FIG. 16. Numeration of sites in a big triangular cluster.

FIG. 17. Two-domain structure at the boundary of the infinite
series Sm.

(b)

(a)

FIG. 18. �a� Configurations of the big triangle, which generate
the two-domain structure �first three rows� and structure �b� �last
row�. �b� Configurations of the big triangle which, at the boundary
of infinite series Sm, have the same energy as the configurations
depicted in �a�.
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− J3 + 2J4 � 0, − J1 + 2J3 − 2J4 � 0,

− J1 + 2J3 + 4J4 � 0. �38�

These conditions define the regions shown in Fig. 19. As one
can see, if the range of interactions is greater than 3, the
devil’s step can exist even in the case of attraction between
nearest neighbors �J1�0�. The first of these conditions is
also necessary because it is condition �32�. The second �the
third� condition is sufficient but not necessary because if it is

satisfied, then, at the boundary of the infinite series of
phases, in addition to the configurations depicted in Fig. 18,
only the first �second� configuration shown in Fig. 19�c� has
the minimal energy. However, it does not yield new struc-
tures. To find the whole region where the devil’s step exists
�in the case of up to fourth nearest-neighbor interaction�, one
should considered bigger clusters.

VI. CONCLUSIONS

The method that we have proposed allows us to construct
complete ground-state phase diagram for many lattice-gas
models or equivalent Ising models. The method is especially
effective for investigation of degeneracy at the boundaries
between different regions in the space of parameters of the
Hamiltonian. It gives the possibility to identify first-order
phase transitions and to find infinite series of phases, i.e.,
zero-temperature devil’s steps. In contrast to the method pro-
posed by Brandt and Stolze, our method make possible to
find disordered phases and ordered-but-aperiodic ones �qua-
sicrystalline�.

Using our method, we have found ground states in all
points of the parameter space of the lattice-gas �or Ising�
Hamiltonian on the triangular lattice with nearest- and next-
nearest-neighbor interactions. We have also identified the
first-order phase transitions. We have proven that additional
repulsive third nearest-neighbor interaction leads to appear-
ance of zero-temperature devil’s step. It is the most impor-
tant result of the work. We have also found some necessary
conditions for existence of the devil’s step in the model with
up to 19th nearest-neighbor interaction and sufficient condi-
tions for existence of the devil’s step in the model with up to
fourth nearest-neighbor interaction. In this model, the devil’s
step can exist even in the case of attractive nearest-neighbor
interaction.

At the end, it should be noted that our method is also
applicable to the lattice-gas models with many kinds of par-
ticles �or to Ising-type models with spin larger than 1/2�.
However, despite interesting results owing to this method, it
needs further developments and improvements to solve the
problem of ground states of complex lattice-gas models.
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APPENDIX A: A WAY TO CALCULATE
EXPRESSIONS FOR pi

Here, we will give without proof �the proof is rather
simple� a way to easily calculate pi for the structures of
theinfinite series Sm �see Eq. �17��. Starting from some val-
ues of m, expression for pi �i=1,2 , . . .�, which corresponds
to the structure Sm, has the following form:

pi =
aim

2 + bim + ci

3m2 + 3m + 1
, �A1�

(b)

(a)

(c)

FIG. 19. �Color online� A part of the region where the devil’s
step exists for �a� J1�0 and �b� J1	0 in the case of pairwise
interactions up to fourth nearest neighbors and �c� additional con-
figurations of big triangle at boundaries of the indicated regions.
Dash-and-dot red line shows the real boundary of the regions.
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where coefficients ai, bi, and ci do not depend on m. Coeffi-
cient ai is equal to 2/3 of the number of ith neighbors for any
particle of structure �c� �Fig. 1�. Coefficient bi is determined
as follows:

bi = 3��0 + �1 + �2 + ¯ + �k� − �6k + 1�ai, �A2�

where �0 is the number of ith neighbors for a particle at the
boundary between triangular domains �see Fig. 17�, which is
sufficiently distant from the vertex; �l �l=1,2 , . . . ,k� is the
number of ith neighbors for a three-particle group of lth layer
of these group; k is the number of three-particle group layers
�on one side of the domain boundary� interacting with par-
ticles at the domain boundary.

An example: for eighth neighbors a8=3, k=1, �0=1, �1
=4, b8=3�1+4�− �6+1�3=−6. To calculate ci, it suffices to
calculate pi for a structure Sm, where m is big enough.

APPENDIX B: PROOF OF ABSENCE OF FIRST ORDER
PHASE TRANSITION BETWEEN TWO PHASES

Let us consider phase S�p0 ; p1 , p2 , p3 , . . .� which is a mix-
ture of two phases: S�p0

1 ; p1
1 , p2

1 , p3
1 , . . .� with the weight � and

S�p0
2 ; p1

2 , p2
2 , p3

2 , . . .� with the weight 1−�. If the boundary and
the interaction between two identical motifs are the same as
the boundary and the interaction between different motifs,
i.e., if domain wall between domains of different phases has
zero formation energy, then the expressions for p0 and pi are
as follows:

p0 =
�p0

1 + ��1 − ��p0
2

� + ��1 − ��
,

pi =
�pi

1p0
1 + ��1 − ��pi

2p0
2

�p0
1 + ��1 − ��p0

2 �i = 1,2,3, . . .� . �B1�

Here, � is the ratio of the number of sites in the motif of
second phase to the number of sites in the motif of first
phase.

The mixture of phase S� 4
15 ; 1

2 ,0 , 5
4 � with the weight �

and phase S� 7
25 ; 3

7 ,0 , 12
7 � with the weight 1−� is phase

S� 7−3�
5�5−2�� ; 3−�

7−3� ,0 , 12−7�
7−3� � �see Fig. 20�. At the line J2=− 4

3J1

+ 8
3J3− 1

6h, i.e., at the boundary between phases S� 4
15 ; 1

2 ,0 , 5
4 �

and S� 7
25 ; 3

7 ,0 , 12
7 �, all mixtures of these phases have the same

energy. Hence there is no first-order phase transition between
these phases.
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